Impact of On-Chip Inductance on Power Supply Integrity

M. Eireiner¹, S. Henzler², X. Zhang¹, J. Berthold², D. Schmitt-Landsiedel¹

¹Technische Universität München, Lehrstuhl für Technische Elektronik
²Infineon Technologies AG, Neubiberg
Motivation

- Power supply noise increasing problem, even for low power designs
- di/dt noise adds significant to the overall power supply noise budget
- On-chip inductance is claimed to contribute significantly to total di/dt noise
- Implementing on-chip inductance in power supply noise consideration increases complexity of design flow
- Can on-chip inductance still be neglected for timing considerations?
Scenario for Power Supply Nets

Regular power grid:
• Grid in close proximity to package power bumps

SoC power grid:
• No power bump connections in the outer region due to package and I/O restrictions
Simulation Setup

- \(V_{\text{Supply}} = V_{DD} - V_{SS} \)
- Power grid is modeled by a distributed RLC \(\pi \)-model
- ARM 926 core as reference module
 - \(I_{\text{peak}} = 0.52 \text{A} \) (for transient simulations)
 - Logic area = 1\text{mm}^2
 - \(f_{\text{max}} = 254\text{MHz} \), \(f_{\text{slow}} = 130\text{MHz} \)
- Flipchip package
 - \(0.5\text{nH} \leq L_{\text{bump}} \leq 1.0\text{nH} \)
- Worst case cycle determined for
 - Position
 - Time (1\text{st}, 2\text{nd}, or 3\text{rd} cycle after load/frequency changes)
On-Chip Inductance

- Inductance determined through current loop (magnetic flux)
 - $L_{\text{eff}1} \neq L_{\text{eff}2}$
- Omitting mutual inductances as Worst Case estimate for inductance of power supply rails.
 (Current loop is infinite wide)
- $\frac{d}{dt}$ noise generation due to frequency change

Results:

- Different current profiles do not significantly increase power noise

\[L_{\text{eff}} = L_{11} + L_{22} - 2L_{21} \]
Simulation Results for Regular Grid

- Cycle average of V_{Supply} determines path delay degradation
- Comparison of $\Delta V_{\text{Supply max}}$ and $\Delta V_{\text{Supply avg}}$ without (L_0) and with WC on-chip inductance (L_{WC})
 - Strong deviation between cycle average and maximal value
 - On-Chip inductance has significant effect on $\Delta V_{\text{Supply max}}$
 - Negligible effect on $\Delta V_{\text{Supply avg}}$
 - Similar results for varying L_{Bump}
 - On-Chip inductance still no impact on timing of logic blocks in regular power grid
Wire Distribution for Estimation of Effective Inductance

- Initial SoC grid simulations showed up to 20mV increase in cycle average power noise, omitting mutual inductances, i.e. Worst Case on-Chip inductance (L_{WC})
- Absolute inductance of bumps and wires comparable
 - $L_{bump} \approx 0.5 \text{nH}$
 - $L_{wire} \approx 0.6 \text{nH} (L'/\mu\text{m}^*l_{wire})$
 - $Q(L_{bump}) >> Q(L_{wire})$
- Better estimate required by taking mutual inductances into account
- Detailed analysis of return path geometries
Estimation of Effective Inductance

Assumptions:

- \(C_{iso}/\mu m < 150aF/\mu m < C_{nest}/\mu m \)
- \(C_{min}/\mu m \rightarrow \) longest wires (WC)
- Caps < 4.0fF omitted (WC)
- Fanout 1 \(\rightarrow \) no branching (WC)
- Current return path only at the end of the wire (WC)
- Even current distribution (BC-WC)
- Worst case orientation of all wires
- Breakdown on different layers and their orientation
- Only orthogonal layers can increase current return path
Effective Inductance in Numbers

- Grid dimensions
 - \(\text{pitch}_{\text{LB}} = 400\mu\text{m} \)
 - \(\text{pitch}_{\text{M22B}} = 50\mu\text{m} \)
- Effective inductance \((L_{\text{eff}}) \) is weighted mean of WC estimated current return paths
 - Mutual inductance is very short ranged
 - Fast saturation of inductance for increasing return paths
 - Percentage of return path (1) determines the effective inductance
 - Effective inductance close to best case (BC)

<table>
<thead>
<tr>
<th>return path</th>
<th>(L_{\text{BC}})</th>
<th>2</th>
<th>(\geq 3)</th>
<th>(L_{\text{eff}})</th>
<th>(L_{\text{WC}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB</td>
<td>99.2%</td>
<td>0.7%</td>
<td>0.1%</td>
<td>0.41</td>
<td>1.91</td>
</tr>
<tr>
<td>L [nH/mm]</td>
<td>0.4</td>
<td>1.2</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M22B</td>
<td>82.6%</td>
<td>13.2%</td>
<td>4.2%</td>
<td>0.68</td>
<td>2.1</td>
</tr>
<tr>
<td>pdf</td>
<td>0.5</td>
<td>1.4</td>
<td>2.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Impact of On-Chip Inductance in SoC grid

- Increase of up to 20mV in power noise due to WC on-chip inductance
- For realistic estimate of on-chip inductance, impact of $L_{on-Chip}$ decreases to less than ±5mV
- Even in SoC on-chip inductance can be neglected for timing considerations under realistic assumptions
Conclusion

- On-chip inductance has significant impact on maximum power supply drop
- On-chip inductance might have impact on reliability (overshoots) and on-chip signaling
- Similar results for varying bump inductance
- Negligible impact of on-chip inductance on cycle average of V_{Supply}
- On-chip inductance still can be neglected in timing considerations for logic blocks